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In this supplementary material, we describe the details of our proposed feature super-resolution model for small object
detection and further experiments as follows.

• Section 1 explains about the discrepancy in RRF more in detail.

• Section 2 explains about the losses focusing on thresholds used to filter out irrelevant proposals while computing losses.

• Section 3 gives a detailed account on the configurations of the architecture and training process.

• Section 4 provides the further experiments on the architecture of our model.

• Section 5 demonstrates the consistent effectiveness of our model when using RoI align instead of RoI pooling.

• Section 6 presents the results of additional experiments on MS COCO [9].

• Section 7–8 present the performance of our model by class on PASCAL VOC [2] and Tsinghua-Tencent 100K [12].

• Section 9 compares the feature maps from the existing feature extractor and our SR feature extractor. Moreover, the
comparison on the super-resolved features from the variants of super-resolution model is provided as well.

• Section 10 provides some failure cases of our model. Furthermore, some selected detection results are also provided to
demonstrate the superiority of our proposed model.

1. Discrepancy in Relative Receptive Field (DRRF)
In this section, we discuss the discrepancy in RRF (DRRF) focusing on how it varies as the size of a bounding box differs.

We first derive the Eq.(3) from the main paper in detail as below.

DRRF1/2(w, IW ) =
RRF (w/2, IW /2)

RRF (w, IW )
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(RW + (w/2− 1)×D) /(IW /2)
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where c = RW

D − 1. As RW and D are the constants determined by a backbone structure, c is also a constant. For instance,
RW = 291, D = 16 and c ≈ 17.19 for Faster R-CNN with ResNet-50.

Figure 8 shows how DRRF1/2 changes as the size of a bounding box w increases for three different backbones. The
plots are different by backbones since RW ’s are different as 291, 835 and 219 for ResNet-50, ResNet-101 and MobileNet,
respectively, although D’s are the same for 16.1 Notice that while DRRF1/2 is not significantly large when w ≥ 100, it
dramatically increases as w decreases. In particular, for the range of w where we treat bounding boxes as small (≤ 96× 96),
this discrepancy is severely large. Therefore, it is not reasonable to use the features from the existing feature extractor as
targets to train super-resolution model.
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Figure 8: As the size of the bounding box decreases, DRRF, as defined in equation 7, increases. It implies that if the size of a
proposal is large, the discrepancy in RRF is not significant. However, it can be significantly large when the size of a proposal
is small.

In comparison with the DRRF from the existing feature extractor, let’s take a closer look at the DRRF when super-
resolution target extractor is used. We denote it as DRRFSR

1/2 and it is computed as Eq. (8). For the super-resolution target
extractor, the size of the receptive field corresponding to a single feature cell is approximately two times larger than that of the
backbone feature extractor. Thus, RW in Eq.(2) is replaced by 2RW to compute RRF of the super-resolution target extractor
which is denoted as RRFSR.

DRRFSR
1/2 (w, IW ) =

RRF (w/2, IW /2)

RRFSR(w, IW )

≈ (RW + (w/2− 1)×D) /(IW /2)

(2RW + (w − 1)×D) /IW

=
2RW + wD − 2D

2RW + wD −D

= 1− 1(
2RW

D − 1
)
+ w

= 1− 1

c′ + w
(8)

For ResNet-50 with w = 1, DRRFSR
1/2 = 0.97, which implies the RRFs are almost identical whereas DRRF1/2 = 1.95.

1We calculate ARF referring to TensorFlow library.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/receptive_field


2. Losses
In the main paper, we define the losses with abuse of notation regarding thresholds due to the limited space. Instead, we

briefly explain how thresholds are applied to compute losses. In this section, we rigorously explain how the losses are defined
without abuse of notation in the order of content, adversarial, classification and localization losses.

Let area1.0i and area0.5i be the area of i-th RoI on the original input image I1.0 and downsampled image I0.5, respectively.
First, content loss (Lcont) are computed as follows.

Icont,i =

{
1, if area1.0i > lcont ∧ area0.5i ≤ ucont

0, otherwise
(9)

Lcont =

N∑
i=1

Icont,i‖T1.0
i − S0.5

i ‖22. (10)

where lcont and ucont denote the lower and upper bounds of area1.0i and area0.5i regarding Lcont. Note that only the RoIs
that satisfy the condition of the indicator are used to compute Lcont. If area1.0i is too small, T1.0

i is not a desirable target for
S0.5
i to follow due to the low-resolution of T1.0

i . On the other hand, if area0.5i is too large, F0.5
i is detail enough to not need

further enhancement through super-resolution.
Super-resolution discriminator takes a role of distinguishing between T1.0

i and S0.5
i . In other words, it should be able

to discriminate high-resolution target features and super-resolved features. To this end, adversarial losses (Lgen, Ldis) are
defined as follows.

I+adv,i =

{
1, if area1.0i > tadv

0, otherwise
(11)

I−adv,i =

{
1, if area0.5i ≤ tadv

0, otherwise
(12)

Lgen = −
N∑
i=1

I−adv,i logD(S0.5
i ) (13)

Ldis = −
N∑
i=1

(
I+adv,i logD(T1.0

i ) + I−adv,i log
(
1−D(S0.5

i )
))

(14)

where tadv denotes a threshold for both area1.0i and area0.5i regarding Lgen and Ldis. For instance, only high-resolution
features corresponding to the large enough RoIs whose area (area1.0i ) is larger than tadv are involved in computing Ldis. On
the other hand, super-resolution features corresponding to the small enough RoIs whose area (area0.5i ) is smaller than tadv
are used to compute both Lgen and Ldis.

Lastly, for Lcls and Lloc, tmain is used to determine whether i-th RoI is treated as small or large. If area1.0i is larger than
tmain, F1.0

i is passed into the large predictor. Otherwise, F1.0
i is first super-resolved into S1.0

i through the super-resolution
feature generator and then passed to the small predictor. The values used for thresholds on different datasets are provided in
Table 5.

The final loss for the SR feature generator is computed as the weighted sum of content, generator, classification and local-
ization losses. The weight of each loss is the multiplication of the reciprocal of normalizer which is the same as the number of
proposals that satisfy the aforementioned conditions, and a coefficient as a hyperparameter. For instance, since the normalizer
for the generator loss is

∑N
i=1 I

−
adv,i and the coefficient is set to 1, the weight of the generator loss is 1/(

∑N
i=1 I

−
adv,i). The

normalizers for the other losses can be simply calculated by summing the indicators as with the generator loss except for the
content loss. We further reduce the normalizer of the content loss by the number of features (Height ×Width × Channel) of
T 1.0
i to prevent the content loss from being dominant. On the other hand, the coefficients for content, generator, classification

and localization losses are set to 5, 1, 1 and 2, respectively.

3. Configuration Details
In this section, we clarify the configurations of both our model architecture and training in details. We generally follow

the configurations used in Faster RCNN [4, 10] for the base model. More specifically, for a sub and base layer in Figure 3,



Dataset lcont ucont tadv tmain

Tsinghua-Tencent 100K [12] 16× 16 32× 32 32× 32 32× 32
PASCAL VOC [2], MS COCO [9] 16× 16 128× 128 96× 96 96× 96

Table 5: The lower/upper bounds (lcont, ucont) and thresholds (tadv , tmain) used to filter out the invalid features of proposals
for different losses on different datasets.

we use conv1 block and conv4 block for ResNet, and conv4dw and conv11 for MobileNet. For the super-resolution part, the
output channels of the first convolution layer before Fsub for ResNet and MobileNet are set to 512 and 256, respectively. Also,
we set the number of residual blocks (B) in the super-resolution feature generator to 3. In terms of training, we use stochastic
gradient descent with momentum of 0.9, and train the generator twice for every training of the discriminator. Lastly, we
implement all of our algorithms using TensorFlow [1, 6] and employ the implementation of third-party for RoI pooling2 as
well as RoI align [11].

4. Ablation Experiments of Model Architecture
In this section, we present more experimental results for our model architecture. More specifically, we measure the con-

tribution of each key component on the performance of our model. The following results are based on Tsinghua-Tencent
100K [12] with ResNet-50 [4] as a backbone unless otherwise stated.

The first experiment is on the structure of the super-resolution target generator. Figure 9 shows two different structures
of the generator. Figure 9a is the structure of the generator proposed in Perceptual GAN [7] whereas Figure 9b describes
the generator used in our model. In Figure 9a, the feature (Fsub,i) extracted from the sub layer is enhanced through B(= 6)
residual blocks and combined with the feature (Fi) from the base layer at the end. Each residual block consists of two 3× 3
convolution layers followed by batch normalization. On the other hand, our proposed generator consists of B(= 3) residual
blocks which take the concatenated feature as an input. After iteratively refined through the residual blocks, the first half
of the feature is sliced out. Table 6 shows the meaningful increases in metrics on both small and medium objects using our
generator compared with the generator proposed in Perceptual GAN.
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Figure 9: The structures of Perceptual GAN and our super-resolution feature generator.

Generator type Small Medium Large Overall
Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1

Perceptual GAN [7] 76.1 86.3 80.9 92.1 94.3 93.2 93.4 93.0 93.2 87.3 90.4 88.8
Ours 78.2 86.5 82.2 94.7 93.8 94.3 93.6 93.0 93.3 88.4 91.1 89.7

Table 6: Comparison on the different architectures of the super-resolution feature generator with ResNet-50 on Tsinghua-
Tencent 100K.

For the next ablation study, we compare the performance by varying the sub layer from conv1 to conv3. As stated in
the main paper, we extract sub-features from the earlier layer to secure the fine and high-frequency information. The results
provided in Table 7 align with our assumption that the features from the earlier layer contain more detailed information so
that they help to identify small objects better.

Lastly, we compare the model architectures with single unified predictor and two separated predictors: small and large
predictors. In fact, we previously designed our model to have one shared predictor, but we changed our model to have two

2https://github.com/endernewton/tensorflow



Layer name Small Medium Large Overall
Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1

conv1 78.2 86.5 82.2 94.7 93.8 94.3 93.6 93.0 93.3 88.4 91.1 89.7
conv2 76.7 86.0 81.1 93.2 93.8 93.5 93.5 93.1 93.3 87.6 90.2 88.9
conv3 77.2 75.2 76.2 92.6 92.7 92.7 93.4 91.2 92.3 86.9 85.8 86.3

Table 7: Comparison on the super-resolution feature generators using different sub layers with ResNet-50 on Tsinghua-
Tencent 100K.

separate predictors because the super-resolved features cannot perfectly imitate the high-resolution target features. According
to Table 8, adding a small predictor (Separated) gives slight improvement over the model with only the large predictor
(Unified). If one considers time/memory complexity more important, only one shared predictor can be employed.

Predictor Small Medium Large Overall
Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1

Unified 77.7 86.4 81.8 94.6 94.0 94.3 93.3 92.9 93.1 88.0 91.1 89.5
Separated 78.2 86.5 82.2 94.7 93.8 94.3 93.6 93.0 93.3 88.4 91.1 89.7

Table 8: Comparison on the number of predictors used with ResNet-50 on Tsinghua-Tencent 100K.

5. Super-Resolution of RoI Aligned Features
In this section, we demonstrate our super-resolution method consistently improves the performance even when RoI align

operation is applied as a substitute for RoI pooling. As stated in the main paper, RoI align operation alleviates the distortion
issue of RoI pooling operation. Since small RoIs do not contain enough information in the first place, however, we expect
our super-resolution method can still help improve the features extracted using RoI align method.

Model Small Medium Large Overall
Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1 Rec. Acc. F1

MobileNet [5] 56.1 72.9 63.4 85.1 84.3 84.7 90.9 83.6 87.1 74.7 80.7 77.5
+ RoI align [3] 56.8 76.9 65.3 83.4 83.8 83.6 86.7 84.2 85.4 73.7 81.6 77.4
ResNet-50 [4] 68.8 81.9 74.9 90.8 93.1 91.9 91.6 92.3 91.9 82.5 89.2 85.7
+ RoI align [3] 66.1 81.1 72.9 90.2 93.1 91.6 90.1 93.1 91.6 81.1 89.0 84.9
ResNet-101 [4] 69.8 81.5 75.2 90.9 93.5 92.2 92.4 92.0 92.2 83.1 89.2 86.0
+ RoI align [3] 70.4 82.3 75.9 91.8 93.9 92.8 91.5 91.9 91.7 83.6 89.6 86.5

Table 9: Comparison between RoI pooling and align on Tsinghua-Tencent 100K test set. There is no significant difference
between RoI pooling and align methods for the base models.

According to the results of the base models on Tsinghua-Tencent 100K dataset as shown in Table 9, there is not much
difference between RoI pooling and align methods. It may be because small objects are dominant in Tsinghua-Tecent 100K
dataset. Hence, we performance the experiments only on PASCAL VOC dataset where we confirm the improvement of using
RoI align is not marginal. Table 10 shows the performance of the base models and ours when RoI align is applied. Although,
as expected, the improvement is not as large as the case of RoI pooling, we still achieve the significant and consistent
improvement with different backbone structures.

Model mAP AP-S AP-M AP-L aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

MobileNet [5] 71.5 9.1 40.2 72.8 74.3 81.3 69.7 58.2 49.2 79.6 85.8 81.9 49.2 75.5 68.2 79.1 83.0 79.3 81.6 41.3 73.7 71.4 78.2 70.1
+ Ours 73.4 13.0 42.6 73.2 81.1 81.3 71.8 60.1 58.0 80.9 88.5 82.1 50.7 77.6 68.3 79.2 83.4 80.4 83.3 44.6 74.2 71.4 78.4 72.9
ResNet-50 [4] 77.6 11.5 45.0 81.2 82.4 81.7 79.8 71.0 63.7 89.4 88.3 88.8 56.0 85.4 65.1 90.3 88.6 82.8 83.1 44.6 82.1 73.7 83.7 72.2
+ Ours 79.4 15.4 47.8 82.0 87.3 84.7 83.0 67.8 70.1 86.9 90.3 90.1 58.9 84.5 64.0 91.1 91.3 83.8 85.6 50.2 83.3 73.1 85.1 77.1
ResNet-101 [4] 79.0 9.9 48.1 82.1 81.5 83.7 81.7 70.7 66.8 88.2 90.1 89.7 59.8 88.9 63.9 91.8 87.2 82.5 83.9 46.2 82.5 79.0 84.9 77.6
+ Ours 80.7 16.5 50.3 82.8 87.7 86.9 83.6 71.6 69.5 90.4 91.5 90.6 58.8 86.6 66.7 92.0 87.2 86.1 87.1 50.5 82.2 80.3 86.6 78.5

Table 10: Detailed performance on VOC 2007 test set. For both base models and ours, RoI align is applied instead of RoI
pooling. Ours still achieve significant improvement regardless of CNN backbones, especially for small subset (AP-S).



6. Experiments on MS COCO dataset
We present the additional experimental results on MS COCO 2017 val set to further verify the generality of our model

along with the detailed performance results on test-dev set. Table 11 shows the detection performance on val set of COCO
2017. As with the results on the other datasets, we can verify the similar tendency on the val set. First, all performance
measures increase as our super-resolution model is added. Second, the performance gains are more significant for small and
medium subsets in both AP and AR metrics. Lastly, Table 12 shows more detailed results on test-dev set where we have
already provided the brief results in the main paper.

Model AP-.5:.95 AP-.5 AP-.75 AP-S AP-M AP-L AR-1 AR-10 AR-100 AR-S AR-M AR-L

MobileNet [5] 19.4 38.7 17.1 3.5 16.6 30.6 20.4 33.5 35.8 11.7 34.1 51.8
+ Ours 21.6 40.7 20.6 7.1 20.9 30.7 22.4 37.3 39.7 18.7 40.1 52.5
ResNet-50 [4] 29.5 51.6 29.8 6.4 26.0 45.3 26.7 42.0 44.5 18.2 42.7 61.8
+ Ours 31.0 53.7 32.0 10.0 28.6 45.1 27.7 44.3 46.8 23.7 46.6 61.5
ResNet-101 [4] 31.9 54.5 32.6 7.6 27.9 48.9 28.4 43.8 46.5 19.7 44.4 63.8
+ Ours 34.0 56.6 35.7 11.6 31.5 49.0 29.5 46.7 49.3 26.5 49.2 63.9

Table 11: Detailed performance on COCO 2017 val set. AP and AR denote the average precision and average recall. Also, S,
M and L denote the subset of small (area ≤ 32 × 32), medium (32 × 32 < area ≤ 96 × 96) and large (area > 96 × 96)
objects, respectively. AR-{1, 10, 100} means the average recall given {1, 10, 100} detections per image.

Model AP-.5:.95 AP-.5 AP-.75 AP-S AP-M AP-L AR-1 AR-10 AR-100 AR-S AR-M AR-L

MobileNet [5] 19.3 38.7 16.9 5.4 20.6 29.2 20.3 32.3 34.0 12.2 36.5 53.2
+ Ours 21.9 41.0 21.0 10.9 23.8 29.0 22.4 36.4 38.1 19.3 41.3 53.1
ResNet-50 [4] 29.5 52.0 29.8 10.2 31.5 44.7 27.0 41.7 43.6 20.1 46.8 64.7
+ Ours 31.2 54.2 32.4 14.3 32.4 44.7 28.2 44.2 46.0 25.0 49.3 64.8
ResNet-101 [4] 32.0 54.7 32.8 11.3 34.3 48.1 28.5 43.6 45.7 21.5 48.9 67.3
+ Ours 34.2 57.2 36.1 16.2 35.7 48.1 29.9 46.7 48.8 28.1 51.8 67.2

Table 12: Detailed performance on COCO 2017 test-dev set. The notations are consistent with Table 11.

7. Detailed Performance on PASCAL VOC
We provide the performance of our proposed model by class on PASCAL VOC dataset as shown in Table 13. Notice that

we obtain the substantial improvement on the categories where the objects tend to be small, such as bottle and plant.

Model mAP AP-S AP-M AP-L aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

MobileNet [5] 73.2 5.1 39.3 75.9 77.5 81.7 70.5 61.0 52.3 81.0 86.4 85.7 51.7 79.0 66.6 80.2 85.7 80.4 81.3 43.9 76.6 71.6 79.6 71.7
+ Ours 77.0 10.1 47.2 76.9 82.2 84.6 76.0 63.3 61.4 82.8 89.9 87.6 56.3 82.7 69.3 83.3 87.7 81.7 84.4 53.9 81.0 72.9 80.4 77.8
ResNet-50 [4] 77.1 6.8 42.9 81.1 80.7 84.7 78.9 68.2 62.3 85.7 87.4 89.9 55.9 84.5 63.1 88.4 88.5 80.3 83.3 47.8 80.6 72.9 83.5 74.5
+ Ours 79.1 10.5 47.9 81.4 82.5 84.6 81.3 73.0 65.1 87.2 89.5 91.6 58.1 86.4 63.4 91.6 90.9 82.4 84.6 52.9 82.7 74.9 82.6 77.6
ResNet-101 [4] 78.8 5.9 46.2 82.3 80.8 84.6 82.0 68.4 64.8 86.9 90.1 91.6 58.7 84.1 60.8 90.2 88.9 83.4 84.2 50.1 83.2 76.4 87.9 77.3
+ Ours 80.6 11.1 48.9 82.7 84.3 85.3 83.5 70.6 68.8 87.6 90.4 91.3 59.4 88.2 62.4 89.9 90.9 84.7 86.4 54.8 86.3 79.8 87.4 79.9

Table 13: Detailed performance on VOC 2007 test set.

8. Detailed Performance on Tsinghua-Tencent 100K
In this section, we provide the performance of our proposed model by class compared to the state-of-the-art models. In

term of F1 score which takes both accuracy and recall into account, our model achieves the highest F1 scores for about two
thirds of 45 classes as shown in Table 14.

9. Comparison on Features from Different Extractors and Super-Resolution Variants
To compare the target features from the existing feature extractor and our proposed SR feature extractor, we provide

the feature maps as shown in Figure 10. We can easily tell the feature maps from the existing feature extractor F1.0 are



Class i2 i4 i5 il100 il60 il80 io ip p10 p11 p12 p19 p23 p26 p27

Zhu et al. [12]
R 82 94 95 97 91 94 89 92 95 91 89 94 94 93 96
A 72 83 92 100 91 93 76 87 78 89 88 53 87 82 78
F 76 88 93 98 91 93 81 89 85 89 88 67 90 87 86

Perceptual GAN [7]
R 84 95 95 95 92 95 92 91 89 96 97 97 95 94 98
A 85 92 94 97 95 83 79 90 84 85 88 84 92 83 98
F 84 93 94 95 93 88 85 90 86 90 92 90 93 88 98

Liang et al. [8]
R 87 97 96 97 98 100 94 88 92 95 95 91 94 95 98
A 90 92 94 93 98 94 86 90 89 90 94 75 93 89 98
F 88 94 94 94 98 96 89 88 90 92 94 82 93 91 98

Ours
R 94 96 96 100 97 97 94 94 95 96 95 93 97 95 97
A 87 91 94 97 97 96 86 88 87 87 88 96 87 89 93
F 90 94 95 98 97 97 90 91 91 92 91 95 92 92 95

Class p3 p5 p6 pg ph4 ph4.5 ph5 pl100 pl120 pl20 pl30 pl40 pl5 pl50 pl60

Zhu et al. [12]
R 91 95 87 91 82 88 82 98 98 96 94 96 94 94 93
A 80 89 87 93 94 88 89 97 100 90 90 89 84 87 93
F 85 91 87 91 87 88 85 97 98 92 91 92 88 90 93

Perceptual GAN [7]
R 93 96 100 93 78 88 85 96 98 96 93 96 92 96 91
A 92 90 83 93 97 68 69 97 98 92 91 90 86 87 92
F 92 92 90 93 86 76 76 96 98 93 91 92 88 91 91

Liang et al. [8]
R 96 98 97 98 86 90 90 100 97 98 97 97 94 97 98
A 81 91 90 93 94 80 78 98 99 90 92 91 92 90 95
F 87 94 93 95 89 84 83 98 97 93 94 93 92 93 96

Ours
R 94 99 92 100 94 94 92 98 96 89 96 96 95 94 94
A 93 93 97 91 94 87 85 97 97 87 85 93 89 93 93
F 94 95 94 95 94 91 88 97 97 88 90 94 92 93 94

Class pl70 pl80 pm20 pm30 pm55 pn pne po pr40 w13 w32 w55 w57 w59 wo

Zhu et al. [12]
R 93 95 88 91 95 91 93 67 98 65 71 72 79 82 45
A 95 94 91 81 60 92 93 84 76 65 89 86 95 75 52
F 93 94 89 85 73 91 93 74 85 65 78 78 86 78 48

Perceptual GAN [7]
R 91 99 88 94 100 96 97 83 97 94 85 96 94 95 53
A 97 86 90 77 81 89 93 78 92 66 83 88 93 71 54
F 93 92 88 84 89 92 94 80 94 77 83 91 93 81 53

Liang et al. [8]
R 93 99 94 96 97 96 96 82 100 90 91 95 94 93 42
A 98 92 98 97 86 90 97 81 97 90 95 95 90 68 50
F 95 95 95 96 91 92 96 81 98 90 92 95 91 78 45

Ours
R 93 96 87 90 94 96 96 91 100 83 94 93 95 91 71
A 100 89 93 85 92 88 93 88 98 64 88 94 92 73 65
F 96 93 90 87 93 92 94 89 99 73 91 94 93 81 68

Table 14: Detailed performance on Tsinghua-Tencent 100K test set. R, A and F refer to recall, accuracy and F1 score,
respectively.

significantly different from the low-resolution feature maps F0.5. However, the feature maps from the SR feature extractor
T1.0 are fairly close to the low-resolution feature maps F0.5, which demonstrates the validity of using our proposed SR
feature extractor.

As an extension of Figure 6 in the main paper, we further provide examples that demonstrate the effectiveness of our
model compared to the other super-resolution methods: SR without supervision and SR with naı̈ve supervision. In Figure 11,
SR without supervision does not improve the features much compared to the low-resolution features and the similar pattern
appears for SR with naı̈ve supervision although there are the target features (Naı̈ve). On the other hand, the low-resolution
input features (LR) are reasonably well super-resolved into their target features (Ours) through our super-resolution model.

10. Comparison on Failure and Success Cases
We have examined the prediction examples to see if our approach has particular weaknesses. Figure 12 shows some of the

failure cases of our model. For each row, we present the test result of the base model on the left, our model in the middle and
groundtruth on the right. As illustrated in Figure 12, the most common failure cases of our model are due to false positives.
For the objects that the base model detects as the background (false negatives), our model recognizes them as objects but
for wrong classes (false positive). For instance, in the first row, our model recognizes the p130 sign as pm30 which the base
model recognizes as the background. In fact, false positives tend to lower the detection metrics such as F1 score and mAP
than false negatives. However, given the fact that the performance of our model is significantly higher than the base model,
we can infer our model makes correct predictions (true positives or true negatives) more than the base model in general.



Figure 13–15 demonstrate the superiority of our model with some selected examples from Tsinghua-Tencent 100K, PAS-
CAL VOC and COCO datasets. For each pair, we show the test results of the base model on the left and our model on the
right. Compared to the base model, our model often detects small objects better with higher confidence.
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Figure 10: Comparison on the feature maps from different feature extractors. Both high-resolution (F 1.0) and low-resolution
(F 0.5) feature maps are extracted from the existing feature extractor using high and low-resolution images, respectively,
whereas the high-resolution target feature maps (T 1.0) are extracted from our proposed SR feature extractor.
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Figure 11: The qualitative results for how RoI features differ by different super-resolution methods on PASCAL VOC dataset.
SR without supervision does not make much improvement compared to the input feature. Such tendency remains unchanged
for the SR with naı̈ve supervision method. On the other hand, ours look very close to its target feature.
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Figure 12: Failure cases on Tsinghua-Tencent 100K (row1 and 2), PASCAL VOC 2007 (row3 and 4) and MS COCO 2017
(row5 and 6) datasets. For Tsinghua-Tencent 100K, green, red and blue rectangles represent true positives, false positives
and false negatives, respectively. For each row, we show the test result of the base model (left), our model (middle) and
groundtruth (right). The background is cropped out of some images for better visualization.



Figure 13: Detection examples on Tsinghua-Tencent 100K test dataset. Green, red and blue rectangles represent true positives,
false positives and false negatives, respectively. Each pair indicates the results from the base model (left) and our model (right)



Figure 14: Detection examples on PASCAL VOC 2007 test dataset. For each pair, we show the test results of the base model
(left) and our model (right). The background is cropped out of some images for better visualization.



Figure 15: Detection examples on MS COCO 2017 val dataset. For each pair, we show the test results of the base model (left)
and our model (right). The background is cropped out of some images for better visualization.
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