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The contents of this supplementary material are as follows.

Section |1| present the detail settings of four base models. Section shows the backbone networks and datasets for
pre-training. Section [I.2]discusses details of anchor settings. Section [I.3]explains the localization and confidence loss
for each base model. Section [T.4] shows the default coefficients for the other types of losses.

Section [2] shows some statistics about the ground truths of part confidence maps.
Section [3|explains the details of training and inference process of our method.

Section #H5| present results of ablation experiments on our occlusion and hard negative handling methods, respectively.
We measure the performance variation according to the configurations of our key components, including the size
changes of the part confidence map, doubling the layer depths of occlusion handling methods, and different uses of the
grid confidence map of the grid classifiers.

Section [6|compare our results with state-of-the-art models.

Section [7)illustrates more qualitative results that visualize effects of occlusion and hard negative handling.

1. Detail Settings of Base Models
1.1. Backbone Networks

Table [T]shows the backbone network and dataset on which the pre-trained weights were trained for each model.

Model Backbone Dataset for pre-training
SqueezeDet+ [13]] SqueezeNet+ [6] ImageNet classification [2]
YOLOV2 [9]] DarkNet-19 [9] PASCAL VOC object detection [4]]
SSD [I8] VGG16 [10] MS COCO object detection [7]
DSSD [3]] VGG16 [10] MS COCO object detection [7]

Table 1: Backbone networks and datasets for pre-training of baseline models.

1.2. Anchor Settings

Table [2|shows the setting of default anchor boxes for four base models.

1.3. Loss Formulations

Single-stage models in this paper have two types of losses: localization and confidence loss. The classification loss, which
is generally specified separately, is omitted since there is only one class in our task. There are slight differences in the formulae



Model Shape of Output Tensors Anchors
{W,H, K} Relative Height | Aspect Ratio
{0.10, 0.14, 0.18,
SqueezeDet+ [13]] {38, 28, 9} 0.24,0.31, 0.41, {0.41}
0.54,0.71,0.94}
{0.10, 0.14, 0.18,
YOLOV2 [9] {20, 15, 9} 0.24,0.31, 0.41, {041}
0.54,0.71, 0.94}
{40, 30, 4} {0.05, 0.09, 0.13, 0.18} {041}
{20, 15, 3} {0.18,0.25, 0.36} {0.41}
SSD 8] {10, 8, 3} {0.36, 0.50, 0.72} {0.41}
{8,6,2} {0.72} {041}
{6,4, 1} {0.90} {0.41}
{1, 1,3} {0.94} {0.20, 0.41, 0.60}
{6, 4, 3} {0.88} {0.20, 0.41, 0.60}
{8, 6, 6} {0.75,0.81} {0.20, 0.41, 0.60}
DSSD [3] {10, 8, 6} {0.63, 0.69} {0.20, 0.41, 0.60}
{20, 15, 3} {0.33,0.42, 0.53} {0.41}
{40, 30, 3} {0.17,0.21, 0.26} {041}
{80, 60, 3} {0.08, 0.10, 0.13} {041}
{160, 120, 1} {0.04} {0.41}

Table 2: Specification of anchors for four base models. The relative height is a height value with respect to the image height,
and the aspect ratio is a ratio of the width to the height.

for each model. Specifically, YOLOv2 and SqueezeDet+ use the same formulations which differs from the ones of SSD and
its derivative DSSD.

YOLOV2 / SqueezeDet+. For the localization loss of each anchor box, YOLOv2 and SqueezeDet+ use ¢ loss in Eq.(T).
The target of confidence is the IOU between predicted box and ground truth. Therefore, they use {5 loss between the IOU

and predicted confidence as confidence loss as in Eq.. In the equations, ]Iaj K = 1 indicates that the (ijk)-th anchor is a

positive example while H&j k) = 1 indicates a negative example.
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SSD / DSSD. SSD and DSSD use smooth ¢; loss for the localization loss (Eq.(3)) and log-loss for the confidence loss
(Eq.(@)).
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1.4. Loss Coefficients

The coefficients of localization loss ()\;) and confidence loss (A, )\j, A, ) are the same as those of original paper for each
model. For the other losses, their coefficients are set as shown in Table [3| where the normalizers are defined as in Eq.@)—.
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Table 3: Default coefficients for each type of loss.

2. Distribution of Ground Truths of Part Confidence Maps

In this section, we show some statistics of ground truth labels that are used to train occlusion handling models. We
limit the ground truth that are labeled as person and its occluded fraction is less than 0.8, which amounts to 125,623 and
15,371 instances for Caltech and CityPersons dataset respectively. Table show how part confidence maps are distributed
according to its grid size (M x N). For Caltech pedestrian dataset, more than 80% of examples are fully visible, and the
examples where below parts are occluded are the most common cases among partially visible examples. In contrast, we can
see that more occluded cases and patterns are found in CityPersons dataset.

3. Details of Training and Test (Inference) Process

Training process. For each ground truth bounding box, we associate the following anchors as positive examples: (i) the
anchor box with the highest IOU value, and (ii) the anchor boxes whose IOU values are over 0.5. We select anchor boxes
whose IOU values are less than 0.4 as negative examples. We ignore anchors whose IOU Values are between 0.4 and 0.5 for
calculating the loss. Because all base models define many anchor boxes as default, there are overwhelming many negative
examples compared to positive examples. Therefore, instead of including them all negative examples in the loss calculation,
we select only the negative examples that cause the highest loss for each loss type (confidence, part, score, and grid loss).
We use the ratio of negative to positive examples as a hyperparameter. (Only for score loss L4, we use the ratio to occluded
examples.) We set 3 for SSD and 10 for the other models. To optimize the loss function, we use the Adam optimizer with /5
regularization.

Inference process. At test time, for a given image, we first compute the output tensor via forward pass, and then obtain the
final prediction results by applying the grid classifiers and non-maximum suppression (NMS). For fast inference, we apply
these two steps to only top 256 predicted boxes with the highest confidences. We set the IOU threshold of NMS to 0.6 for
Caltech and 0.5 for CityPersons dataset.

4. Ablation Experiments of Occlusion Handling Methods

In this section, we present more experimental results about our occlusion handling methods, in which we measure the
performance changes by varying the configuration of key components.



MxN | Rak | 1 2 3 4 5 6 7 8 9 10
P ]
1x3 (n=16)
Freq. 105615 10537 8139 1007 170 155
Percent. | 84.07 839 648 080 0.4  0.12
Cum. 84.07 9246 9894 9974  99.88 100.0
Pt L]
953 | =29
Freq. 103935 9248 6572 938 891 692 633 467 366 351
Percent. | 8247 736 523 075 071 055 050 037 029 028
Cum. 8247 90.10 9533 9608 9678 9734 97.84 9821 9850 98.78
[
Part l - l ! e
(n = 55)
2x5 . . ]
Freq. 102925 8367 4384 2805 789 766 597 378 372 367
Percent. | 81.93  6.66 349 223 063 061 048 030 030 029
Cum. 81.93 8859 92.08 9431 9494 9555 96.03 9633 96.62 9692
par l == = ! e B
(n = 171)
3x6 1]
Freq. 101162 4128 3746 2369 1348 1256 1111 823 707 652
Percent. | 80.53 329 298 189 107 100 088 066 056 052
Cum. 80.53 8381 8680 88.68 89.76 90.75 91.64 9229 9286 93.38

Table 4: Distribution of part confidence maps on Caltech train dataset. n is the total number of parts. The blue areas represent
visible parts.

Max part score. For the max part score method, we test four different settings of the grid size (M x N) of the part
confidence map to find the most proper size.

Soft part score. For the soft part score method, we measure the performance variation according to the grid size (M x N)
of the part confidence map, and the depth of additional layers for calculating the part score. The reason for considering
the depth is to check that single layer is sufficient to interpret the part confidence map. We test four different combinations
between 2 x 5 and 3 x 6 for the grid size, and single and double layers. Beyond the single layer setting we proposed at the
main draft (Eq.(8)), we also tested two fully connected layers to obtain the final detection score (Eq.(9)),

Sperson = O (Wsle max (0,W;71\7)> ®)

Sperson = O (W;l—Q,?, max (WJQ,Q max (0’ W;’li}) )) ®

where o is a sigmoid function, and parameters to learn include Wy 1, Wp 1 € RMXNIXS and W 5 € RS, Wy 5 €
RS*S’, W3 € RS"*1_ In our experiments, number of nodes per layer is fixed to S = 6 for single layer, and (S, S’) =
(45, 64) for double layer setting.

Table [6H9] show the results of occlusion handling methods for each model. For all models, soft part score method shows
the best performance in general. This generally means that the information in the semantic part is more meaningful than the
information in the basic part (each grid of part confidence map). However, the max part score method shows better results on
heavy subset. Since heavily occluded person is visible only for small area, its confidence is highly correlated to the score of
basic part.



M x N | Rank

[ 1 2
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1x3 | W=7 ]

Freq. 11981 1823 1172 197 144 32 22
Percent. 77195 11.86  7.62 1.28 0.94 0.21 0.14
Cum. 7795 89.81 9743 9871 99.65 99.86 100.0

Pt [T]
9% 3 (n = 30)

Freq. 10933 1382 895 748 366 204 175 95 93 90
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3x6 -
205

(n = 163)
Freq. 8865 1624 631 537 489 336 311 243 183
Percent. 57.67 10.57 4.11 3.49 3.18 2.19 2.02 1.58 1.33 1.19
Cum. 57.67 6824 7234 7584 79.02 8120 8323 84.81 86.14 8733

Table 5: Distribution of part confidence maps on CityPersons train dataset. n is the total number of parts. The blue areas
represent visible parts.

Method Height > 50
Part score | Structure Reasonable All None Partial Heavy
Baseline 23.37 32.83 21.58 36.07 63.65
1x3) 23.47 33.53 21.10 38.43 65.87
Max (2 x3) 22.07 32.40 19.51 38.37 65.83
(2 x5) 22.08 30.30 19.46 40.14 56.60
(3 x 6) 22.92 32.15 21.01 33.65 62.35
(2x5)-6 20.30 31.80 18.45 33.28 68.25
Soft 3x6)-6 22.56 31.68 20.52 35.88 60.71
(2 x5)-45-64 22.20 31.82 20.04 37.27 62.69
(3x6)-45-64 20.78 30.18 18.76 34.65 59.87

Table 6: Detailed breakdown performance of occlusion handling methods at SqueezeDet+ on Caltech test dataset (lower is
better).

5. Ablation Experiments of Hard Negative Handling Methods

We perform ablation studies on grid classifiers by changing two configurations in the model. First, we change the size of
convolutional filter that is used as a classifier (1 x 1 and 3 x 3). Second, we compare the performances of different uses of
the grid confidence map as follows.

e Baseline: The results of base models.

e Loss only: The result of using the grid confidence map for training.



Method Height > 50
Part score [ Structure Reasonable All None Partial Heavy
Baseline 20.83 29.35 18.97 34.37 57.55
(1 x3) 18.33 28.02 16.58 30.60 60.93
Max 2x3) 20.74 29.03 18.75 33.82 58.43
(2x5) 19.31 27.56 17.40 31.69 53.90
(3 x 6) 20.58 31.11 18.52 33.71 67.05
(2x5)-6 18.91 28.17 16.90 31.26 60.07
Soft (3x6)-6 18.29 27.16 16.12 31.94 57.02
(2x5)-45-64 18.77 28.51 16.83 30.61 61.78
(3x6)-45-64 18.98 27.93 16.51 33.85 57.42

Table 7: Detailed breakdown performance of occlusion handling methods at YOLOv2 on Caltech test dataset (lower is better).

Method Height > 50 Height > 20
Part score [ Structure Reasonable All None Partial Heavy All None Partial Heavy
Baseline 16.36 25.18 14.55 27.89 53.80 60.19 52.21 67.96 76.47
1 x3) 15.81 24.09 13.86 29.40 51.18 60.18 53.02 70.23 74.71
Max (2 x3) 16.19 23.87 14.86 30.03 47.68 59.53 52.71 69.63 7311
(2 x 5) 15.60 23.70 13.69 27.85 50.02 59.94 53.07 69.92 73.14
(3 x 6) 16.16 24.84 14.27 25.30 53.19 60.19 51.92 70.54 77.24
(2x5)-6 15.56 24.37 13.15 30.99 54.41 59.83 52.73 69.48 75.11
Soft (3x6)-6 14.57 23.83 12.57 27.80 53.94 59.23 51.05 69.28 77.53
(2 x5)-45-64 15.50 23.76 13.56 28.34 51.34 59.00 51.31 68.93 75.29
(3 x6)-45-64 14.23 22.53 12.22 27.52 50.46 58.94 51.71 68.85 74.37

Table 8: Detailed breakdown performance of occlusion handling methods at SSD on Caltech test dataset (lower is better).

Method Height > 50 Height > 20
Part score \ Structure Reasonable All None Partial Heavy All None Partial Heavy
Baseline 13.25 20.53 11.23 25.23 44.13 53.03 44,72 64.15 69.59
(1x3) 12.72 20.23 10.72 25.80 4481 52.64 44.42 63.77 69.57
Max 2x3) 13.04 22.44 10.82 29.42 53.66 54.39 45.16 65.18 74.60
(2 x 5) 12.01 20.92 10.36 22.40 49.82 53.05 43.46 62.60 74.70
(3 x 6) 13.01 20.52 11.36 23.83 44.44 53.19 44.48 62.96 71.47
(2x5)-6 11.60 19.87 9.78 22.12 46.75 51.96 43.36 60.79 70.80
Sofi B3x6)-6 11.84 20.28 10.12 24.66 47.49 52.35 43.22 62.89 72.90
(2 x5)-45-64 10.97 18.58 8.88 26.14 44.11 50.55 41.51 61.68 69.65
(3x6)-45-64 11.99 20.63 10.06 25.49 49.33 52.91 43.82 63.98 73.53

Table 9: Detailed breakdown performance of occlusion handling methods at DSSD on Caltech test dataset (lower is better).

o Adjustment: The result of using the grid confidence map for training and refining the initial confidence.

The parameters of the models used by loss only and adjustment are the same. The only difference is whether to adjust the
initial confidence using the predicted grid confidence map.

Table[I0]shows the overall results of ablation experiments of hard negative handling methods. The performance of the loss
only is always better than the baseline. However, in case of adjustment, the results are different depending on the base model.
The adjustment performs the best in SqueezeDet+ and YOLOV2, but the worst in the SSD and DSSD (even worse than the
baseline). In the main draft, we mentioned about the two intuitions of why the grid classifiers help improve the performance:
1) the refinement by the averaged results from multiple feature maps, and ii) resolving the mismatch between a predicted box
and its feature representation in the base models. The SSD and DSSD have layers that care for the object scales; that is, the
grid feature representations of the ground truth and its anchor are not significantly mismatched each other because of their
similar scales. Therefore, the second effect is not much significant in SSD and DSSD.



Model Height > 50 Height > 20

Reasonable All None Partial Heavy All None Partial Heavy
SqueezeDet+ [[13] 23.47 32.88 21.69 34.05 62.96 - - - -
+ 1 x 1 (loss only) 20.87 29.23 18.88 34.20 56.56 - - - -
+ 1 x 1 (adjustment) 19.58 28.72 17.79 29.68 56.53 - - - -
+ 3 x 3 (loss only) 21.36 31.56 19.83 30.44 65.51 - - - -
+ 3 X 3 (adjustment) 20.61 30.48 18.96 30.21 62.42 - - - -
YOLOV2 [9] 20.83 29.35 18.97 34.37 57.55 - - - -
+ 1 x 1 (loss only) 18.66 28.79 16.74 31.12 62.27 - - - -
+ 1 x 1 (adjustment) 16.92 27.65 14.95 27.44 63.57 - - - -
+ 3 x 3 (loss only) 19.88 28.54 18.24 31.94 57.76 - - - -
+ 3 X 3 (adjustment) 18.80 27.86 17.06 29.46 57.61 - - - -
SSD [8] 16.36 25.18 14.55 27.89 53.80 60.19 52.21 67.96 76.47
+ 1 x 1 (loss only) 14.92 23.68 12.90 27.90 52.93 59.15 51.84 69.98 73.61
+ 1 x 1 (adjustment) 16.94 26.20 14.90 28.20 54.51 61.46 54.53 70.18 74.16
+ 3 x 3 (loss only) 14.04 23.79 12.03 26.52 55.10 59.66 51.60 68.93 76.04
+ 3 X 3 (adjustment) 16.51 27.17 14.39 26.93 57.51 62.37 54.46 68.32 76.04
DSSD [5] 13.25 20.53 11.23 25.23 44.13 53.03 44.72 64.15 69.59
+ 1 x 1 (loss only) 11.83 19.95 9.90 26.41 47.51 50.11 41.19 60.56 69.87
+ 1 x 1 (adjustment) 15.28 23.74 13.19 26.80 48.73 55.08 46.95 61.67 70.17
+ 3 x 3 (loss only) 10.85 18.20 9.00 24.28 42.42 49.24 41.32 60.74 65.99
+ 3 x 3 (adjustment) 14.40 21.69 12.83 22.50 42.34 54.07 47.31 61.06 65.07

Table 10: Detailed breakdown performance of hard negative handling methods on Caltech test dataset (lower is better).

6. Comparison with State-of-the-art Models

The goal of this paper is to propose a lightweight approach that is applicable to single-stage detection models for improving
their occlusion and hard negative handling. We do not argue that our approach is integrable with any detection models, but
limited to single-stage models, which are often inferior to the two-stage models in performance, but are much faster and
lighter. Therefore, we focus on improving the performance of base networks, instead of comparing with state-of-the-art
methods. Our final detection accuracies depend on those of base models; thus if the base model is competitive, our method is
as well.

Table [TT]shows the performance comparison with state-of-the-art models on Caltech zest dataset. Encouragingly, in some
settings (all/heavy with Height > 50 and > 20), our approach with DSSD achieves the best as in Table [T}

Model Height > 50 Height > 20

Reasonable All None Partial Heavy All None Partial Heavy
DeepParts [11] 11.89 22.79 10.64 19.93 60.42 64.78 58.43 70.39 81.81
MS-CNN [1]] 9.95 21.53 8.15 19.24 59.94 60.95 53.67 67.16 79.51
RPN+BF [14] 9.58 24.01 7.68 24.23 69.91 64.66 56.38 72.55 87.48
F-DNN [3] 8.65 19.31 7.10 1541 55.13 50.55 40.29 60.60 76.98
F-DNN+SS [3]] 8.18 18.82 6.74 15.11 53.67 50.29 40.21 60.08 75.77
DSSD [5] + Ours 10.85 18.20 9.00 24.28 42.42 49.24 41.32 60.74 65.99

Table 11: Comparison with state-of-the-art models on Caltech fest dataset (lower is better).

As of now, the best-performing model on CityPersons is RepLoss [[12], which is also a two-stage model taking advantage
over our single-stage base models. Nonetheless, as shown in Table[I2] our approach with DSSD outperforms RepLoss in the
partial and heavy setting.

7. More Qualitative Results

Figure [I] shows more examples of occlusion handling. Many success examples (Figure [[a) are the cases whose visible
areas are upper parts. The models can easily detect those examples, mainly because much occlusion in the training set is such
cases as discussed in Section [2] The failure cases (Figure [Tb) include hard negative and mislabelled examples. We can see



Model \Reasonable All None Partial Heavy

RepLoss [12] 13.20 N/A 7.60 16.80  56.90
DSSD [5] + Ours 16.77 31.71  11.15 16.05  48.52

Table 12: Comparison with the state-of-the-art model on CityPersons val set (lower is better).

the effect of grid classifiers in Figure 2] All examples are adjusted in the right way by the grid classifiers. We can also check
the robustness of using multiple layers. If one of the layers predicts its confidence map incorrectly as the initial confidence,
the other layer can refine its value.
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(b) Failure cases

Figure 1: More examples of occlusion handling. For better visualization, we crop detection regions from images.
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Figure 2: More examples of adjustment by grid classifiers. For better visualization, we crop detection regions from images.
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